Rarefied Pure Gas Transport in Non-isothermal Porous Media: Validation and Tests of the Model

نویسنده

  • Gérard L. Vignoles
چکیده

Abstract. Viscous flow, effusion, and thermal transpiration are the main gas transport modalities for a rarefied gas in a macro-porous medium. They have been well quantified only in the case of simple geometries. This paper presents a numerical method based on the homogenization of kinetic equations producing effective transport properties (permeability, Knudsen diffusivity, thermal transpiration ratio) in any porous medium sample, as described e. g.by a digitized 3D image. The homogenization procedure – neglecting the effect of gas density gradients on heat transfer through the solid – leads to closure problems in R for the obtention of effective properties ; they are then simplified using a Galerkin method based on a 21-element basis set. The kinetic equations are then discretized in R space with a finite-volume scheme. The method is validated against experimental data in the case of a closed test tube. It shows to be coherent with past approaches of thermal transpiration. Then, it is applied to several 3D images of increasing complexity. Another validation is brought by comparison with other distinct numerical approaches for the evaluation of the Darcian permeability tensor and of the Knudsen diffusion tensor. Results show that thermal transpiration has to be described by an effective transport tensor which is distinct from the other tensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rarefied Pure Gas Transport in Non-Isothermal Porous Media: Effective Transport properties from Homogenization of the Kinetic Equation

Viscous flow, effusion, and thermal transpiration are the main gas transport modalities for a rarefied gas in a macro-porous medium. They have been well quantified only in the case of simple geometries. This paper develops a model based on the homogenization of kinetic equations producing effective transport properties (permeability, Knudsen diffusivity, thermal transpiration ratio) in any poro...

متن کامل

Multiple Solutions for Slip Effects on Dissipative Magneto-Nanofluid Transport Phenomena in Porous Media: Stability Analysis

In the present paper, a numerical investigation of transport phenomena is considered in electrically-conducting nanofluid flow within a porous bed utilizing Buongiorno’s transport model and Runge-Kutta-Fehlberg fourth-fifth order method. Induced flow by non-isothermal stretching/shrinking sheet along with magnetic field impact, dissipation effect, and slip conditions at the surface are...

متن کامل

Lattice Gas Automata Simulation of Adsorption Process of Polymer in Porous Media

Lattice gas automata (LGA) model is developed to simulate polymer adsorption process by adding some collision rules. The simulation result of the model is matched with batch experiment and compared with accepted isothermal adsorption equations. They show that the model is viable to perform simulation of the polymer adsorption process. The LGA model is then applied for simulating continuous poly...

متن کامل

Effect of Water Gas Shift Reaction on the Non-Isothermal Reduction of Wustite Porous Pellet Using Syngas

Effect of water gas shift reaction (CO+H2O=CO2+H2) on wustite reduction has been investigated by a transient, non-isothermal mathematical model based on grain model. In this model, wustite porous pellet is reduced using Syngas, namely a mixture of hydrogen, carbon monoxide, carbon dioxide and water vapor. For this purpose, governing equations containing continuity equation of species and energy...

متن کامل

Transport Property Estimation of Non-Uniform Porous Media

In this work a glass micromodel which its grains and pores are non-uniform in size, shape and distribution is considered as porous medium. A two-dimensional random network model of micromodel with non-uniform pores has been constructed. The non-uniformity of porous model is achieved by assigning parametric distribution functions to pores throat and pores length, which was measured using ima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009